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Abstract. The purpose of this article is the description of the classical dynamics of a resonant
non-integrable Hamiltonian, which is written in the form
H = ω1I1 + ω2I2 + x11I

2
1 + x22I

2
2 + x12I1I2 + 2kmnI

m/2
1 I

n/2
2 cos(mϕ1 − nϕ2)

+kCI
a/2
1 I

b/2
2 cos(rϕ1 + sϕ2)

and where the term withkC behaves as a perturbation to the remaining integrable part (call
it HF) of the Hamiltonian. Apart from the chaotic region around the separatrix ofHF, the
dynamics ofH is clearly different from that ofHF only in the neighbourhood of low-order
periodic orbits ofHF, where coupling-induced resonance islands are seen to emerge. In order to
model these resonance islands,HF is Taylor expanded in terms of its action integrals (thanks to
recent exact analytical calculations) and the perturbation withkC is Fourier expanded in terms
of the angles conjugate to the actions ofHF. Retaining in the expansion only the term which
is almost secular (because of the vicinity of the periodic orbit) leads to a local single resonance
form of H . The classical frequencies and action integrals, which can be calculated analytically
for this local expression ofH , are shown to be in excellent agreement with ‘exact’ numerical
values deduced from power spectra and Poincaré surfaces of section. It is pointed out in the
discussion that all the trajectories inside coupling-induced resonance islands share one almost
degenerate classical frequency, and that the width of the coupling-induced island grows as the
square root of the perturbation parameterkC, but is inversely proportional to the square root of
the slow classical frequency at the periodic orbit and to the square root of the derivative, with
respect to the first action integral, of the winding number.

1. Introduction

Let us first consider the 2D Dunham expansion Hamiltonian

HD(I1, I2, ϕ1, ϕ2) = ω1I1 + ω2I2 + x11I
2
1 + x22I

2
2 + x12I1I2 (1.1)

where the momentum coordinateIi is conjugate to the position coordinateϕi . This kind
of Hamiltonian (with three degrees of freedom instead of only two and with anharmonicity
parameters with degree higher than two) accurately describes some ‘simple’ molecules as
NO2 (up to the conical intersection at about 10 000 cm−1 vibrational energy) [1–3] or
SO2 [4] (for the whole range of recorded spectra, that is up to 20 000 cm−1 vibrational
energy). The classical dynamics of this Hamiltonian is trivial: since the expression ofHD

does not depend on theϕi ’s, I1 and I2 are the action integrals of the system and their
conjugate angles evolve linearly with time, according toϕ1 = (ω1 + 2x11I1 + x12I2)t and
ϕ2 = (ω2 + 2x22I2 + x12I1)t . The whole phase space is regular (non-chaotic).

0305-4470/96/185963+15$19.50c© 1996 IOP Publishing Ltd 5963
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Let us now add toHD a first term depending on the zero-order anglesϕi :

HF(I1, I2, ϕ1, ϕ2) = HD(I1, I2, ϕ1, ϕ2)+ 2kmnI
m/2
1 I

n/2
2 cos(mϕ1 − nϕ2). (1.2)

The additional term in equation (1.2) has not been chosen at random: it is that one,
which is obtained when applying perturbation theories, such as secular perturbation theory
or Birkhoff–Gustavson perturbation theory [5–8], to a Hamiltonian with a polynomial
expansion of the potential energy. As a consequence, the Hamiltonian in equation (1.2) is
precisely the one which is used by spectroscopists to fit the vibrational spectra of molecules
with two modes in nearm:n resonance, such as for instance CS2 (m:n = 1:2) [9–12]. The
resonance Hamiltonian in equation (1.2) has also been used to study many other problems
of interest in molecular physics, such as, for example, the energy transfer between bonds
in triatomic molecules [13, 14], the normal to local transition in coupled vibrations [15, 16],
the semiclassical quantization of strongly resonant systems [7, 9, 17–20], the semiclassical
theory of avoided crossings and of the related dynamical tunnelling [8, 21, 22], the influence
of classical resonances on quantum energy levels [23], the periodic orbit description of
the Fourier transform of molecular spectra [24] and the application of Berry and Tabor’s
trace formula to a Hamiltonian of spectroscopic interest [25]. The HamiltonianHF is still
integrable, sinceI = nI1 + mI2 and the energyE are two constants of the motion. It has
been shown recently, that Hamilton’s equations can be solved exactly and analytically for
the fundamentalm:n = 1:1, 1:2 and 1:3 resonances, leading to simple expressions for the
fundamental frequencies of the tori supporting the trajectories and for the corresponding
action integrals [17, 26].

A natural development consists in adding toHF a second term which depends on the
anglesϕ′

is. The Hamiltonian is thus expressed in the form

H ≡ E = HF(I1, I2, ϕ1, ϕ2)+ kCHC(I1, I2, ϕ1, ϕ2)

HC(I1, I2, ϕ1, ϕ2) = I
a/2
1 I

b/2
2 cos(rϕ1 + sϕ2).

(1.3)

This Hamiltonian can be thought of as describing the vibrations of a molecule in the region
where the single resonance approximation first becomes insufficient. Alternatively, it can
be understood as resulting from the Birkhoff–Gustavson perturbation theory [5–8] applied
to a polynomial potential when a second anglerϕ1 + sϕ2 is added to the so-called null-
space. Such a Hamiltonian has been used, for instance, to study the amplitude instability
and ergodic behaviour for conservative nonlinear oscillator systems [27], the influence of
resonance overlapping on the emergence of chaotic motion [28, 29], the intramolecular
energy redistribution in centrosymmetric chains [30] and the quantum analysis of the
transition towards vibrational chaos in triatomic molecules [31].

The major difference betweenH andHF arises from the fact thatI = nI1+mI2 no longer
remains constant and that chaotic motion can occur. The HamiltonianH in equation (1.3) is
actually an example of an intermediate regime well described by the KAM (Kolmogorov–
Arnold–Moser) theorem [32–36]: for low values ofkC, rational tori are destroyed but most
trajectories on irrational tori remain regular, whereas for larger values ofkC an increasing
macroscopic portion of the phase space is invaded by chaotic trajectories. The interesting
feature ofH is that the amount of non-integrability continuously increases with increasing
values ofkC, whereas the evolution towards chaos is rather more complex for seemingly
simpler Hamiltonians like the polynomial potential.

The purpose of the present paper is to provide analytical results for the understanding
of the dynamics (classical frequencies, action integrals and phase space structure) of the
non-integrable HamiltonianH in the regions where this study can still be performed, that
is outside chaotic regions. A first, physical, application of these calculations deals with
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the assignment of individual levels in the vibrational spectra of molecules whenever a
polynomial expression is known for the potential energy surface. This polynomial expression
might have been obtained either from the fit of observed levels or fromab initio calculations.
As stated a few lines above, addition of a second angle in the null-space of the Birkhoff–
Gustavson perturbation theory [5–8] leads locally to the HamiltonianH in equation (1.3),
which is a better approximation than the single resonance approximation in equation (1.2) or
the diagonal expansion in equation (1.1). The two action integrals, which are calculated for
H , are approximate constants of the motion for the full polynomial Hamiltonian and can be
used through Einstein–Brillouin–Keller (EBK) semiclassical quantization to label quantum
levels. A second possible application of these calculations deals with the semiclassical trace
formula, which has been derived by Ozorio de Almeida for mixed systems [37] and has
been further discussed by Tomsovicet al [38]. This trace formula expresses the density of
states as a function of the classical properties of the hyperbolic and elliptic fixed points,
which result from the destruction of each rational torus. This paper should, therefore, enable
an easy application of Ozorio de Almeida trace formula to all the Hamiltonians which can
be locally approximated according to equation (1.3).

It is shown in section 2 that the classical dynamics ofH is very close to that ofHF

far from the coupling-induced resonance islands that develop around periodic orbits (POs)
of HF, but that great distortions occur in the neighbourhood and inside these islands. In
order to enable further analytical calculations, a local single resonance form ofH around
POs ofHF is derived in section 3, using the solutions of Hamiltonian’s equations obtained
in [17, 26] forHF. The expressions of the classical frequencies and of the action integrals
of the local Hamiltonian are then given in section 4. Finally, the validity of the whole
analytical procedure is checked in section 5 against ‘exact’ results deduced from power
spectra and Poincaré surfaces of section and the results are discussed.

2. Coupling-induced resonance islands around POs ofHF

Using the usual canonical transformation, according to

I = nI1 +mI2 J = nI1 θ = ϕ2

m
ψ = ϕ1

n
− ϕ2

m
(2.1)

the HamiltonianH in equation (1.3) is rewritten in the form

H ≡ E = HF(I, J, θ, ψ)+KCHC(I, J, θ, ψ)

HF(I, J, θ, ψ) = ωI + εJ + χI I
2 + χJJ

2 + χIJ IJ +KJm/2(I − J )n/2 cos(mnψ)

HC(I, J, θ, ψ) = J a/2(I − J )b/2 cos((rn+ sm)θ + rnψ)

(2.2)

with the following relations between the old and new parameters:

ω = ω2

m
ε = ω1

n
− ω2

m
K = 2kmn

nm/2mn/2
KC = kC

na/2mb/2

χI = x22

m2
χJ = x11

n2
− x12

mn
+ x22

m2
χIJ = x12

mn
− 2

x22

m2
.

(2.3)

The explicit Hamiltonian which will be used throughout this paper for the purpose of
illustration is

H(I1, I2, ϕ1, ϕ2) ≡ E = ω1I1 + ω2I2 + x11I
2
1 + x22I

2
2 + x12I1I2

+2kmn
√
I1I2 cos(ϕ1 − 2ϕ2)+ kCI

2
2 cos(2ϕ2) (2.4)

that ism = 1, n = 2, a = 0, b = 4, r = 0 ands = 2 in equations (1.2) and (1.3). The choice
for the parametersa, b, r ands is unimportant, because, as will be developed in section 3,
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HC is dealt with using perturbative schemes anyway. In contrast, the method used in this
paper is restricted to values ofm:n equal to 1:1, 1:2, 1:3 and 2:2, because the analytical
solutions of Hamilton’s equations forHF were found only for these fundamental resonances
[17, 26]. To my knowledge, no analytical solution can be given for Hamilton’s equations
dealing withHF for values ofm and n such thatm + n > 4, so that much more drastic
approximations must be made to study the classical dynamics of the HamiltonianH with
two angle-dependent terms. For instance, one can replace inHF the term 2kmnI

m/2
1 I

n/2
2 by

some average value, which is either taken at random or estimated from plots (as in [8, 18]),
and then proceed along the same lines as here. One interesting point in the cases with
m+n 6 4 is that it requires no approximation forHF and no numerical plot, except for the
sake of comparison. The following numerical values of the spectroscopic parameters are
used:

ω1 = 2 ω2 =
√

5 − 1 k12 = −0.1000 kC = −0.0004

x11 = −0.0060 x22 = 0.0010 x12 = −0.0025.
(2.5)

The expression of the Hamiltonian in equation (2.4) in terms of the (I, J, θ, ψ) set of
coordinates is

H ≡ E = ωI + εJ + χI I
2 + χJJ

2 + χIJ IJ +K
√
J (I − J ) cos(2ψ)

+KC(I − J )2 cos(2θ). (2.6)

An example of (I, θ ) and (J,ψ) Poincaŕe surfaces of section drawn at energyE = 15 for
the complete HamiltonianH in equation (2.6) is given in figure 1. Two major differences
are pointed out when comparing this figure with that obtained for the integrable case with
KC = 0 (see for instance [17]). The most striking one is obviously the region almost
ergodically filled with points, which is associated with chaotic motion around the hyperbolic
fixed point separatix ofHF. In that region trajectories do not remain on a 2D torus defined
by two action integrals, but instead explore a 3D subspace of the complete 4D phase space.
Study of this region is not within the scope of the present paper (see, however, the end
of section 5). Outside from the chaotic region almost all the phase space is occupied by
regular trajectories, which are more or less distorted compared to the integrable case. As
will become clearer later, the most distorted trajectories are to be found around those values
of I which correspond to low rational values of the ratio of the classical frequencies of
the integrable HamiltonianHF (ω∗/ν∗ equal to 2

1,
1
1,

1
2,

1
3,

2
3, . . . , whereω∗ andν∗ denote

the two classical frequencies ofHF, as in [17, 26]). Near these periodic orbits (POs), the
trajectories brake into resonance islands. In order not to confuse these resonance islands with
resonant trajectories ofHF, they will hereafter be called the ‘coupling-induced’ resonance
islands. For instance, circled in figure 1 are the coupling-induced resonance islands, which
develop around theω∗/ν∗ = 2

3 PO ofHF with first action integralIPO ≈ 14.270 25. The
resonance islands around theω∗/ν∗ = 1

2 PO ofHF with first action integralIPO ≈ 15.148 27
are also clearly seen quite near to the chaotic region.

The purpose of the present paper is to study the classical dynamics of the non-
integrable HamiltonianH near these coupling-induced resonance islands. Indeed, the
classical dynamics ofH away from these islands is not very different from the dynamics of
the integrable HamiltonianHF, which has already been thoroughly investigated [17, 26]. As
an example, the classical frequencies ofH deduced from the plot of the power spectra are
reported in figure 2 for initial values ofI ranging fromI0 = 12.83–13.68, that is far enough
from the 2

3 PO. The classical frequencies ofHF, which are calculated according to [17, 26],
are plotted on the same figure. The excellent agreement between the two plots shows
that HC can freely be neglected away from coupling-induced resonance islands, at least
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Figure 1. Poincaŕe surfaces of section (SOS) drawn for the full, non-integrable HamiltonianH

at energyE = 15. The (J,ψ) SOS atθ = 0 (modulo 2π ) contains 33 trajectories with initial
values ofI ranging fromI0 = 11.065 toI0 = 16.585 with increments of 0.24. Trajectories with
the lowest values ofI0 are those circling around the elliptic fixed points on theψ = π/2 and
ψ = 3π/2 axes, whereas trajectories with the highest values ofI0 are those circling around the
elliptic fixed points on theψ = 0 (or 2π ) andψ = π axes. The initial value ofθ is θ0 = π/4
and the initial value ofψ is ψ0 = 0 for non-resonant trajectories andψ0 = kπ/2 (k = 0, 1, 2, 3)
for resonant trajectories winding around an elliptic fixed point on theψ = kπ/2 axis. The(I, θ )
SOS atψ = 0 (modulo 2π ) contains 20 trajectories with values ofI0 ranging from 12.025 to
I0 = 16.585 with increments of 0.24. The resonant trajectories with initial values ofI0 equal to
11.065, 11.305, 11.545 and 11.785, which are drawn for the (J,ψ) SOS, never cut theψ = 0
surface. Initial values ofθ andψ are,θ0 = π/4 andψ0 = 0 respectively. AtKC = 0, the phase
space is completely described by the values ofI at the elliptic fixed points (Imin ≈ 11.015 242
and Imax ≈ 16.585 125) and at the hyperbolic fixed point separatrix (I+ ≈ 15.353 599) and by
that value ofI , which separates resonant from non-resonant trajectories without being associated
with any fixed point (I− ≈ 12.018 399) [26]. The chaotic trajectory, which is clearly seen in
both SOS, has initial valueI0 = 15.385. The circles surround the coupling-induced resonance
islands, which are the traces of the trajectory with initial valueI0 = 14.185. Other coupling-
induced resonance islands with initial valueI0 = 15.145 (1

2 PO ofHF) can be seen close to the
chaotic trajectory.

up to a given accuracy. As can be seen in figure 3, this is no longer the case for values
of I0 ranging from 13.83 to 14.68, that is, those values which surround the first action
integral IPO ≈ 14.270 25 of the2

3 PO ofHF. The large discrepancies observed in figure 3
between the calculated classical frequencies ofHF and the observed classical frequencies
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Figure 2. Plot of the classical frequenciesω∗ and ν∗ for initial values of I ranging from
I0 = 12.83 to I0 = 13.68 (that is, far enough from the23 PO of HF) for the non-integrable
HamiltonianH at energyE = 15. Other initial values areψ0 = 0 andθ0 = π/4 (see text). The
dot-dashed line corresponds to the classical frequencies ofHF calculated according to the formula
in [17, 26]. The exact classical frequencies for the non-integrable HamiltonianH are deduced
from power spectra obtained from numerical integration of trajectories for a time1t = 30 000.
The absolute precision for observed classical frequencies is about 10−4.

of H clearly demonstrate that additional studies are needed in the neighbourhood of these
coupling-induced resonance islands.

3. Derivation of a local single resonance form ofH around POs of HF

One method to obtain a simpler, analytically treatable form ofH near a PO ofHF consists
of (i) Taylor expandingHF to second order as a function of its classical action integrals
I and I2, (ii) Fourier expandingHC as a function of the two anglesV and�, conjugate
respectively toI andI2, (iii) retaining in the Fourier expansion ofHC only the term which
is almost secular because of the neighbourhood of the PO. One is then led to a local single
resonance Hamiltonian with a constant prefactor for the cosine term.

But, first of all, let us review very briefly the classical mechanics of the Hamiltonian
HF for them:n = 1:1, 1:2 and 1:3 resonances. Since the expression ofHF in equation (2.2)
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does not depend onθ , I is a consatnt of the motion for the HamiltonianHF. Hamilton’s
equations for the three other coordinates can be solved analytically and the solutions can
be put in the form

J (t) = F(ω∗t −10)

ψ(t) = ψ0 + zω∗t +G(ω∗t) (3.1)

θ(t) = θ0 + ν∗t +H(ω∗t)

whereF , G andH are three periodic functions with period 2π . F is an even function,
whereasG andH are odd functions, which satisfyG(0) = H(0) = 0. ψ0 and θ0 are the
values ofψ andθ at timet = 0, whereas10 is a phase shift, which depends on the valueJ0

of J at t = 0. It is most important in equation (3.1) to use the equations in [26], which take
into account initial values, rather than those in [17], which do not take into account initial
values.ω∗ andν∗ are the two fundamental frequencies of the tori supporting the trajectories.
z is a phase space structure parameter, which is equal to zero for resonant trajectories ofHF

and to±1/n for non-resonant trajectories ofHF. The first action integral of the system is
just I . The second action integral of the system is labelledI2. Its expression is also to be
found in [17, 26]. The angles conjugate to the actionsI andI2 areV = ν∗t and� = ω∗t ,
respectively. Note that at timet = 0, one hasV (0) = �(0) = 0.

Let us now consider one trajectory of the non-separable HamiltonianH in equation (2.2)
with initial values (I0, J0, θ0, ψ0) at time t = 0. Taylor expansion of the energy in the
neighbourhood of the trajectory ofHF with action integralsI0 andI20 and energyE leads
to

E′ = ω′
1I + ω′

2I2 + x ′
11I

2 + x ′
22I2

2 + x ′
12II2 + · · · +KCHC

x ′
11 = 1

2
ν∗

0

(
∂ν∗

∂E

)
0

+ 1

2

(
∂ν∗

∂I

)
0

x ′
22 = 1

2
ω∗

0

(
∂ω∗

∂E

)
0

x ′
12 = ω∗

0

(
∂ν∗

∂E

)
0

ω′
1 = ν∗

0 − 2x ′
11I0 − x ′

12I20 ω′
2 = ω∗

0 − x ′
12I0 − 2x ′

22I20

E′ = ν∗
0I0 + ω∗

0I20 − x ′
11I

2
0 − x ′

22I2
20 − x ′

12I0I20.

(3.2)

In equation (3.2), derivatives with respect toI are calculated at a constant value of the
energyE (and not of the second action integralI2) and derivatives with respect toE at
constant value ofI . The 0 subscript means that the classical frequencies ofHF(ν

∗, ω∗)
and their derivatives are taken atE and I0. The additional termHC is then treated as a
perturbation and Fourier expanded as a function of the anglesV = ν∗t and� = ω∗t using
equation (3.1). Calculations can be somewhat simplified by assuming that initial values are
chosen such that10 = 0 or10 = π , which implies thatF(�−10) is an even function of
� (and not just of�−10). One obtains

HC =
+∞∑
k=−∞

hk cos((rn+ sm)V − k�+ δ0)

hk = 1

2π

∫ 2π

0
d�F(�−10)

a/2(I − F(�−10))
b/2

× cos((rn+ sm)H(�)+ rnG(�)+ (rnz + k)�)

δ0 = (rn+ sm)θ0 + rnψ0.

(3.3)

Around a particular PO, only the almost secular termk = n′ such that(rn+sm)/n′ ≈ ν∗/ω∗

is retained in equation (3.3). This leads to the expression of the local single resonance form
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Figure 3. Plot of the classical frequenciesω∗ and ν∗ for initial values of I ranging from
I0 = 13.83 to I0 = 14.68 (that is, surrounding the valueIPO ≈ 14.270 25 of the first action
integral of the 2

3 PO ofHF) for the non-integrable HamiltonianH at energyE = 15. Other
initial values areψ0 = 0 and θ0 = π/4 (see text). The dot-dashed line corresponds to the
classical frequencies ofHF calculated using the formula in [17, 26] and the full curve to the
frequencies ofH calculated according to equations (4.5), (4.6) and (5.3). The exact classical
frequencies for the non-integrable HamiltonianH are deduced from power spectra obtained
from numerical integration of trajectories for a time1t = 30 000. The absolute precision for
observed classical frequencies is about 10−4.

of H :

E′ ≈ ω′
1I + ω′

2I2 + x ′
11I

2 + x ′
22I2

2 + x ′
12II2 +K ′ cos(m′V − n′�+ δ0)

K ′ = Kchn′ m′ = rn+ sm.
(3.4)

4. Classical dynamics of the local single resonance form ofH

The classical dynamics of the local single resonance form ofH in equation (3.4) is studied
along the same lines as the dynamics of the resonance HamiltonianHF in equation (1.2)
[17, 26]. The Hamiltonian is first rewritten according to the same canonical transformation
as in equation (2.1):

I ′ = n′I +m′I2 J ′ = n′I θ ′ = �/m′ ψ ′ = V/n′ −�/m′ (4.1)
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whereθ ′ is conjugate toI ′ andψ ′ to J ′, leading to

E′ = ω′I ′ + ε′J ′ + χ ′
I I

′2 + χ ′
J J

′2 + χ ′
IJ I

′J ′ +K ′ cos(m′n′ψ ′ + δ0) (4.2)

and relations similar to equation (2.3) between the old and new parameters:

ω′ = ω′
2

m′ ε′ = ω′
1

n′ − ω′
2

m′

χ ′
I = x ′

22

m′2 χ ′
J = x ′

11

n′2 − x ′
12

m′n′ + x ′
22

m′2 χ ′
IJ = x ′

12

m′n′ − 2
x ′

22

m′2 .
(4.3)

The Hamiltonian in equation (4.2) looks like that of the hindered rotor, which has been
studied by several authors (see for instance [39, 40]). There, is however, a great difference,
in the sense that the Hamiltonian in equation (4.2) is a Hamiltonian with two degrees of
freedom, whereas the hindered rotor is a system with a single degree of freedom, and one
must be careful not to loose one degree of freedom. The properties of the classical dynamics
of the Hamiltonian in equation (4.2) can be sketched as follows. Since equation (4.2) does
not depend onθ ′, I ′ is a constant of the motion. Let us define the constantsA, B, C and
R in terms ofE′ andI ′, according to

A = (ε′ + χ ′
IJ I

′)2 + 4χ ′
J (E

′ − ω′I ′ − χ ′
I I

′2)

B = |4χ ′
JK

′| C = −ε′ − χ ′
IJ I

′ R = A+ B

2B

. (4.4)

Classical trajectories do not exist ifA < −B. In contrast, a single librational trajectory is
observed for each value of(E′, I ′) if |A| < B, whereas two rotational trajectories coexist
for each value of(E′, I ′) if A > B. Librational trajectories correspond to trajectories inside
coupling-induced resonance islands (resonant trajectories), whereas rotational trajectories lie
outside the resonance islands (non-resonant trajectories). Librational/resonant trajectories
are separated from rotational/non-resonant trajectories by two hyperbolic fixed point
separatrices, which are defined byA = B (that is R = 1). For librational/resonant
trajectories(|A| < B), the classical frequenciesν∗′ and ω∗′ and the action integralI ′

1
andI ′

2 of the Hamiltonian in equation (4.2) are expressed in the form

ω∗′ = m′n′Gπ
√

2B

4K(R)
ν∗′ = G

{
ω′ + 2χ ′

I I
′ + χ ′

IJ

2χ ′
J

C

}
I ′

1 = I ′

G
I ′

2 = 2
√

2B

m′n′Gπχ ′
J

{E(R)+ (R − 1)K(R)}
(4.5)

whereas for rotational/non-resonant trajectories(A > B)

ω∗′ = n′Gπ
√
A+ B

2K(1/R)
ν∗′ = G

{
ω′ + 2χ ′

I I
′ + χ ′

IJ

2χ ′
J

(
C ∓ ω∗′

Gn′

)}
I ′

1 = I ′

G
I ′

2 = m′

Gχ ′
J

{
∓C

2
+

√
A+ B

π
E(1/R)

}
.

(4.6)

In equations (4.5) and (4.6),G denotes the greatest common divisor ofm′ andn′ and arises,
as well as the factorm′ in the expression ofI ′

2 for rotational trajectories, from the fact
that action integrals must be calculated over closed loops gone through only once. The
two rotational trajectories are characterized by opposite signs in the expressions ofν∗′ and
I ′

2. On the other hand,ω∗′ vanishes at the separatices between librational and rotational
trajectories, so thatω∗′ andν∗′ continuously cross these separatrices, but each one with a
vertical tangent (see figure 5 later).
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5. Results and discussion

In order to use the formalism developed in sections 3 and 4 above, there only remains to
determine howI ′ in equation (4.1) must be calculated. Indeed,I andI2 vary in time for
the HamiltonianH , and one is able to calculate analyticallyI2 for HF but not forH . This
problem can be solved by calculatingI2 using the standard formula for the HamiltonianHF

[17, 26] at a point where no energy is put inHC, that is where the total phasem′V −n′�+δ0

in equation (3.4) is equal to(2k+1)π/2. This can be done by checking for the phase while
integrating trajectories numerically and calculatingI2 and I ′ for the value ofI which is
arrived at the first time the phase crosses an odd multiple ofπ/2. However, a much
simpler solution, which enables all the calculations to be performed analytically and avoids
numerical integration of trajectories, consists of choosing initial values (I0, J0, θ0, ψ0) such
that the phase att = 0, that isδ0, is precisely equal to an odd multiple ofπ/2. Then one
just has

I ′ = n′I0 +m′I20. (5.1)

For the Hamiltonian in equation (2.6), the initial valuesθ0 = π/4 andψ0 = 0 satisfy both
the condition on10 mentioned in section 3 (here10 = π ) and the condition onδ0 (here
δ0 = π/2). This is the reason why all the trajectories used in figures 2–5 to verify the
analytical calculations developed in the present paper have initial valuesθ0 = π/4 and
ψ0 = 0.

The observed and calculated action integralsI ′ and I ′
2 against the initial valueI0 are

plotted in figure 4. The calculated values are obtained from equations (4.5), (4.6) and (5.1).
The ‘observed’ values for trajectories outside coupling-induced resonance islands (rotational
trajectories) are obtained by measuring area in Poincaré surfaces of section (SOS), according
to

I ′ = 1

2πG
(n′SI,θ +m′SJ,ψ) |I ′

2| = m′n′

2πG
SI,θ (5.2)

whereSI,θ denotes the area below theI = I (θ) curve in the first SOS (forθ varying from 0
to 2π ) andSJ,ψ the area below theJ = J (ψ) curve in the other SOS (be careful thatψ only
varies from 0 toπ [9]). Equation (5.2) is true atKC = 0 and remains valid as long asI0 does
not cross one of the two values associated with the separatrices between trajectories inside
and outside resonance islands (I0 ≈ 14.121 460 andI0 ≈ 14.426 635). This crossing causes
a drastic change in the topology of the tori which support the trajectories and invalidates
equation (5.2). It is seen that the agreement is excellent between observed and calculated
action integrals. It is also noticed that for rotational trajectories,I ′

2 is very close to its
asymptotic value for vanishingKC, that is±m′n′I0/G. As for the second action integral
I2 of HF, I ′

2 is discontinuous whenI0 crosses a separatix. Exact numerical calculation of
action integrals inside coupling-induced resonance islands is not easily achievable, since
one no longer knows the topology of the torus, which becomes very long and thin. The
discontinuous deformation of tori at separatrices invalidates most general methods, as is
acknowledged in [41]. It was, however, observed that the computed value of the area of
the resonance island in the (I, θ ) SOS divided by 2π is very close to the calculated value
of I ′

2 (see the central part of the bottom figure in figure 4), which suggests thatI ′
2 can be

calculated exactly using (I, θ ) Poincaŕe SOS. This point, which is not clearly understood,
merits further investigation.

The observed and calculated frequenciesν∗′ and ω∗′ against the initial valueI0 are
plotted in figure 5. The calculated values are obtained from equations (4.5) and (4.6).
The ‘observed’ values, for trajectories both inside and outside coupling-induced resonance
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Figure 4. Plot of the action integralsI ′ andI ′
2 for initial values ofI ranging fromI0 = 13.83

to I0 = 14.68 (that is, surrounding the valueIPO ≈ 14.270 25 of the first action integral of the
2
3 PO ofHF) for the non-integrable HamiltonianH at energyE = 15. Other initial values are
ψ0 = 0 andθ0 = π/4 (see text). In both plots, the full curves represent the action integrals
calculated according to the formulae in equations (4.5), (4.6) and (5.1). The dot-dashed line
in the bottom plot corresponds to the limiting value ofI ′

2 for vanishing values ofKC, that is
±6I0. The exact values of the action integrals (+) are deduced from Poincaré SOS obtained by
numerical integration of trajectories (see section 5).

islands, are deduced from the power spectra of the coordinateJ obtained from numerical
integration of Hamilton’s equations: one actually just needs to follow the evolution (as a
function of I0) of the peaks, which far from them′/n′ PO ofHF appear very close to the
frequenciesω∗ and m′ν∗ − n′ω∗. Indeed, according to section 4,ν∗′ and ω∗′ behave
continuously when crossing separatrices and, in addition, for rotational trajectories the
asymptotic values (both far from the PO or for vanishing values ofKC) of ν∗′ and ω∗′

are

ν∗′ ≈ G

m′ω
∗ ω∗′ ≈ G

m′ |m′ν∗ − n′ω∗|. (5.3)

The peak atω∗ is the strongest one in the power spectrum, whereas the peak atm′ν∗ −n′ω∗

is very weak and grows nearly linearly withKC. It is observed that the agreement is again
excellent between observed and calculated frequencies. It is also noticed that, because of
the vertical tangents at the separatices, the classical frequencies for non-resonant trajectories
do not remain as close to their asymptotic values for vanishing values ofKC as the second
action integralI ′

2 does. The perturbation on frequencies extends over a range ofI0, which is
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Figure 5. Plot of the classical frequenciesω∗′ and ν∗′ for initial values of I ranging from
I0 = 13.83 to I0 = 14.68 (that is, surrounding the valueIPO ≈ 14.270 25 of the first action
integral of the2

3 POHF) for the non-integrable HamiltonianH at energyE = 15. Other initial
values areψ0 = 0 andθ0 = π/4 (see text). The dot-dashed line corresponds to combinations
of the classical frequencies ofHF calculated using the formula in [17, 26] and equation (5.3)
and the full curve to the frequencies ofH calculated according to equations (4.5) and (4.6).
The exact classical frequencies for the non-integrable HamiltonianH are deduced from power
spectra obtained from numerical integration of trajectories for a time1t = 30 000. The absolute
precision for observed classical frequencies is about 10−4.

roughly twice the range ofI0 for resonant trajectories. The most striking feature in figure 5
(as well as in figure 3) is the fact that one frequency remains mostly constant throughout
the coupling-induced resonance island: simple Taylor expansions in equation (4.5) actually
show thatall the trajectories inside coupling-induced resonance islands share an almost
degenerate frequencyν∗′ ≈ Gω∗

PO/m
′, whereω∗

PO denotes the second classical frequency
of HF at the PO. This property does not depend on the smallness ofKC (it was verified
that it is still observed for values ofKC larger than the anharmonicity parameters) and
seems to be a quite general phenomenon, since it is also noticeable in the study of Laskar
dealing with the standard map [42]. On the other hand, reverting equation (5.3) enables the
calculation of the frequenciesν∗ andω∗ in figure 3. The discontinuity ofν∗ at IPO is just
due to the sign change atIPO of the term inside the absolute value in equation (5.3).

Another point, which is worth noting, deals with the width of the coupling-induced
resonance islands. Indeed, Taylor expansions in equation (4.4) show that separatrices
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Figure 6. Plot of the maximal Lyapunov exponentσ1 for trajectories ofH with energyE = 15
and initial valuesθ0 = π/4, ψ0 = 0 andI0 ranging from 14.9 to 15.8. The positions of the
separatrixI+ of HF, as well as the separatrices for the coupling-induced resonance islands, are
indicated on the plot.

(A = B, that is,R = 1) are approximately located at

I0 ≈ IPO ∓
(∣∣∣∣ 2K ′

ω∗
PO(∂(ν

∗/ω∗)/∂I)PO

∣∣∣∣)1/2

(5.4)

where the classical frequencies and their derivatives are calculated atIPO and forKC = 0.
The expression in equation (5.4) leads to values ofI0 at the separatrices equal toI0 ≈
14.1178 andI0 ≈ 14.4228, close to the exact values atI0 ≈ 14.1215 andI0 ≈ 14.4266.
Equation (5.4) shows that the width of the coupling-induced resonance island grows as the
square root of the perturbation parameterkC, but is inversely proportional to the square
root of the frequencyω∗ of the periodic orbit and to the square root of the derivative with
respect toI of the winding numberν∗/ω∗.

It can also be mentioned that this study provides a nice illustration of the criterion of
overlapping resonances introduced by Chririkov in the 1950’s [43] and further discussed by
Walker and Ford [27] and Atkin and Logan [28, 29] (an actually much clearer illustration
than a previous paper of mine on this subject, see [44]). This criterion states that widespread
chaos occurs where coupling-induced resonance islands overlap. For the Hamiltonian in
equations (2.5) and (2.6), it is seen using equation (4.4), that:

• below the separatrix ofHF at I+ ≈ 15.353 599 [17, 26], all the 2/n′ POs overlap for
values ofn′ equal to or larger than five (I0 > 15.286 77), whereas the24 (15.088 976 I0 6
15.212 25) and2

3 (14.121 466 I0 6 14.426 63) POs remain well separated.
• aboveI+, all the 2/n′ POs overlap for values ofn′ equal to or larger than four

(I0 6 15.420 68), whereas the23 (15.503 496 I0 6 15.621 07) and2
2 (16.378 246 I0 6

16.507 21) POs remain well separated.
(Due to the expression ofHC in equation (2.6), the procedure for the derivation of

the local single resonance form ofH in section 3 shows that only 2/n′ resonance islands
are expected to develop substantially.) Maximal Lyapunov exponents obtained using the
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rescaling procedure described in [45] are drawn in figure 6 for values ofI0 ranging from
14.9 to 15.8. It is clearly seen in this figure that, in agreement with the criterion of Walker
and Ford, the region of overlapping resonances is completely chaotic. However, the chaotic
region extends somewhat further, and is actually stopped by the first well separated coupling-
induced resonance islands which are encountered (2

4 islands belowI+ and 2
3 islands above

I+).

6. Conclusion

In this paper, a study of the classical dynamics of a non-integrable Hamiltonian in the
neighbourhood of coupling-induced resonance islands is performed. This study is both
statistical and iterative. It is statistical, in the sense that it neglects higher-order small
details. Indeed, the global features of the SOS in figure 1 can again be observed at a
smaller scale around each set of coupling-induced resonance islands: in figure 6, thin
regions of chaos are clearly seen around the separatrices of first-order, coupling-induced
resonance islands. Similarly, the plot of SOS with a smaller increment ofI0 reveals very
small, second-order, coupling-induced resonance islands around POs of the local single
resonance form of the HamiltonianH in equation (3.4) that is for low-order rational values
of ω∗′/ν∗′, and so on for increasing detail orders. None of these details is reproduced by
the perturbation method used in the discussion above. However, the procedure described
in this article is alsoiterative, in the sense that second-order thin features can be taken into
account along the same lines as first-order coupling induced resonance islands. That is, by
(i) expanding the HamiltonianH in equation (3.4) in terms of theI ′ andI ′

2 action integrals
and (ii) Fourier expandingHC in terms of the anglesν∗′t andω∗′t conjugate toI ′ andI ′

2
and retaining only the almost secular term. The intricate route towards chaos of the ‘double
resonance’ Hamiltonian in equation (2.2) can therefore, at least in part, be modelled.
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