IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Classical dynamics of a non-integrable Hamiltonian near coupling-induced resonance islands

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 5963
(http://iopscience.iop.org/0305-4470/29/18/025)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 04:01

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gern9 (1996) 5963-5977. Printed in the UK

Classical dynamics of a non-integrable Hamiltonian near
coupling-induced resonance islands

Marc Joyeux

Laboratoire de Spectrogtrie Physique (CNRS UA08), Universitloseph Fourier-Grenoble 1,
BP87, 38402 St Martin d’Bres Cedex, France

Received 14 December 1995, in final form 31 May 1996

Abstract. The purpose of this article is the description of the classical dynamics of a resonant
non-integrable Hamiltonian, which is written in the form

H=0w1l1 +wrlr+ x11112 + x22122 + x121112 + 2k 11"/21;/2 cogmep1 — ney)

keI 1)? costron + s¢2)
and where the term witlic behaves as a perturbation to the remaining integrable part (call
it He) of the Hamiltonian. Apart from the chaotic region around the separatri¥f the
dynamics ofH is clearly different from that ofHg only in the neighbourhood of low-order
periodic orbits ofHg, where coupling-induced resonance islands are seen to emerge. In order to
model these resonance islandg; is Taylor expanded in terms of its action integrals (thanks to
recent exact analytical calculations) and the perturbation ktis Fourier expanded in terms
of the angles conjugate to the actions/. Retaining in the expansion only the term which
is almost secular (because of the vicinity of the periodic orbit) leads to a local single resonance
form of H. The classical frequencies and action integrals, which can be calculated analytically
for this local expression off, are shown to be in excellent agreement with ‘exact’ numerical
values deduced from power spectra and Pomaanfaces of section. It is pointed out in the
discussion that all the trajectories inside coupling-induced resonance islands share one almost
degenerate classical frequency, and that the width of the coupling-induced island grows as the
square root of the perturbation parameter but is inversely proportional to the square root of
the slow classical frequency at the periodic orbit and to the square root of the derivative, with
respect to the first action integral, of the winding number.

1. Introduction

Let us first consider the 2D Dunham expansion Hamiltonian
Ho(I1, Iz, 91, 92) = w1l + wplo + x1117 + x2005 + x1211 I (1.1)

where the momentum coordinalg is conjugate to the position coordinage. This kind

of Hamiltonian (with three degrees of freedom instead of only two and with anharmonicity
parameters with degree higher than two) accurately describes some ‘simple’ molecules as
NO, (up to the conical intersection at about 10000 énvibrational energy) [1-3] or

SO, [4] (for the whole range of recorded spectra, that is up to 20 000 cvibrational
energy). The classical dynamics of this Hamiltonian is trivial: since the expressiéf of

does not depend on thg's, I; and I, are the action integrals of the system and their
conjugate angles evolve linearly with time, accordingpio= (w; + 2x1111 + x1212)t and

@2 = (w2 + 2x2217 + x1211)t. The whole phase space is regular (non-chaotic).

0305-4470/96/185963+15$19.5@C) 1996 IOP Publishing Ltd 5963
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Let us now add taHp a first term depending on the zero-order angigs

m/2 yn/2
He(I1, I, 1, 92) = Hp(I1, Lo, 91, 92) + 2k 112 152 cOSmen — ngy). (1.2)

The additional term in equation (1.2) has not been chosen at random: it is that one,
which is obtained when applying perturbation theories, such as secular perturbation theory
or Birkhoff-Gustavson perturbation theory [5-8], to a Hamiltonian with a polynomial
expansion of the potential energy. As a consequence, the Hamiltonian in equation (1.2) is
precisely the one which is used by spectroscopists to fit the vibrational spectra of molecules
with two modes in neam:n resonance, such as for instance,@&:n = 1:2) [9-12]. The
resonance Hamiltonian in equation (1.2) has also been used to study many other problems
of interest in molecular physics, such as, for example, the energy transfer between bonds
in triatomic molecules [13, 14], the normal to local transition in coupled vibrations [15, 16],
the semiclassical quantization of strongly resonant systems [7,9, 17-20], the semiclassical
theory of avoided crossings and of the related dynamical tunnelling [8, 21, 22], the influence
of classical resonances on quantum energy levels [23], the periodic orbit description of
the Fourier transform of molecular spectra [24] and the application of Berry and Tabor's
trace formula to a Hamiltonian of spectroscopic interest [25]. The HamiltoHiais still
integrable, sincd = nl; + ml, and the energy are two constants of the motion. It has
been shown recently, that Hamilton’s equations can be solved exactly and analytically for
the fundamentak::n = 1:1, 1:2 and 1:3 resonances, leading to simple expressions for the
fundamental frequencies of the tori supporting the trajectories and for the corresponding
action integrals [17, 26].

A natural development consists in adding A a second term which depends on the
anglesyp’s. The Hamiltonian is thus expressed in the form

H = E = He(Ih, I2, 91, 92) + kcHc(I1, 12, 1, ¢2)

Hc(1y, Iz, 01, 92) = 11’/215/2 CoOgrg1 + s@2).
This Hamiltonian can be thought of as describing the vibrations of a molecule in the region
where the single resonance approximation first becomes insufficient. Alternatively, it can
be understood as resulting from the Birkhoff-Gustavson perturbation theory [5-8] applied
to a polynomial potential when a second angia + s¢, is added to the so-called null-
space. Such a Hamiltonian has been used, for instance, to study the amplitude instability
and ergodic behaviour for conservative nonlinear oscillator systems [27], the influence of
resonance overlapping on the emergence of chaotic motion [28,29], the intramolecular
energy redistribution in centrosymmetric chains [30] and the quantum analysis of the
transition towards vibrational chaos in triatomic molecules [31].

The major difference betwedth and Hr arises from the fact thdt = n/;+m I, no longer
remains constant and that chaotic motion can occur. The Hamiltdhisnequation (1.3) is
actually an example of an intermediate regime well described by the KAM (Kolmogorov—
Arnold—Moser) theorem [32—36]: for low values kf, rational tori are destroyed but most
trajectories on irrational tori remain regular, whereas for larger valugg @i increasing
macroscopic portion of the phase space is invaded by chaotic trajectories. The interesting
feature ofH is that the amount of non-integrability continuously increases with increasing
values ofkc, whereas the evolution towards chaos is rather more complex for seemingly
simpler Hamiltonians like the polynomial potential.

The purpose of the present paper is to provide analytical results for the understanding
of the dynamics (classical frequencies, action integrals and phase space structure) of the
non-integrable Hamiltoniai! in the regions where this study can still be performed, that
is outside chaotic regions. A first, physical, application of these calculations deals with

(1.3)
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the assignment of individual levels in the vibrational spectra of molecules whenever a
polynomial expression is known for the potential energy surface. This polynomial expression
might have been obtained either from the fit of observed levels or tmmitio calculations.
As stated a few lines above, addition of a second angle in the null-space of the Birkhoff—
Gustavson perturbation theory [5-8] leads locally to the Hamilto#faim equation (1.3),
which is a better approximation than the single resonance approximation in equation (1.2) or
the diagonal expansion in equation (1.1). The two action integrals, which are calculated for
H, are approximate constants of the motion for the full polynomial Hamiltonian and can be
used through Einstein—Brillouin—Keller (EBK) semiclassical quantization to label quantum
levels. A second possible application of these calculations deals with the semiclassical trace
formula, which has been derived by Ozorio de Almeida for mixed systems [37] and has
been further discussed by Tomsowtal [38]. This trace formula expresses the density of
states as a function of the classical properties of the hyperbolic and elliptic fixed points,
which result from the destruction of each rational torus. This paper should, therefore, enable
an easy application of Ozorio de Almeida trace formula to all the Hamiltonians which can
be locally approximated according to equation (1.3).

It is shown in section 2 that the classical dynamicsHbfis very close to that ofir
far from the coupling-induced resonance islands that develop around periodic orbits (POs)
of Hg, but that great distortions occur in the neighbourhood and inside these islands. In
order to enable further analytical calculations, a local single resonance fofnasbund
POs of Hg is derived in section 3, using the solutions of Hamiltonian’s equations obtained
in [17,26] for Hr. The expressions of the classical frequencies and of the action integrals
of the local Hamiltonian are then given in section 4. Finally, the validity of the whole
analytical procedure is checked in section 5 against ‘exact’ results deduced from power
spectra and Poincarsurfaces of section and the results are discussed.

2. Coupling-induced resonance islands around POs df

Using the usual canonical transformation, according to

I=nli+ml, J=nl 0=22 y=9_% 2.1)

m n m
the HamiltonianH in equation (1.3) is rewritten in the form

H=E=HgI,J,0,¥)+ KcHc(, J, 0, )
He(1, J,0,9) = ol +&J + x 12+ x5 02+ x1,10 + KJ™?(1 — J)"?cosmny)  (2.2)
Hc(I, J,0,9) = J2(1 — P2 cod(rn + sm) + rny)

with the following relations between the old and new parameters:

w2 w1 w2 2k n kc
w = — E= — — — K = — KC = —F
m n m nm/2mn/2 na/2mb/2 (2 3)
X22 X11  X12 X2 X12 2X22 '
XI= "5 Xi= 5= +— Xig=——2—.
m n mn m mn m

The explicit Hamiltonian which will be used throughout this paper for the purpose of
illustration is
H(l1, I, 1, 92) = E = w111 + wzly + x111% + x200% + x1211 1

+2kny/ 112 COS @1 — 2¢3) + kcIZ COS2p5) (2.4)

thatism =1,n =2,a =0,b =4,r = 0ands = 2 in equations (1.2) and (1.3). The choice
for the parameters, b, r ands is unimportant, because, as will be developed in section 3,
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Hc is dealt with using perturbative schemes anyway. In contrast, the method used in this
paper is restricted to values of:n equal to 1:1, 1:2, 1:3 and 2:2, because the analytical
solutions of Hamilton’s equations fdtr were found only for these fundamental resonances
[17,26]. To my knowledge, no analytical solution can be given for Hamilton’s equations
dealing with Hg for values ofm andn such thatn + n > 4, so that much more drastic
approximations must be made to study the classical dynamics of the Hamilt&hiaith

two angle-dependent terms. For instance, one can repladie the term 2,,,1;"/%1;/* by

some average value, which is either taken at random or estimated from plots (as in [8, 18]),
and then proceed along the same lines as here. One interesting point in the cases with
m+n < 4 is that it requires no approximation féf= and no numerical plot, except for the
sake of comparison. The following numerical values of the spectroscopic parameters are
used:

w1 =2 w,=~5-1 k12 = —0.1000 kc = —0.0004
X11 = —0.0060 X22 = 0.0010 X12 = —0.0025

The expression of the Hamiltonian in equation (2.4) in terms of the/,@, v) set of
coordinates is

H=E=wl+¢eJ+ x1 1%+ x;J°+ x171J + KN J(I — J)cox2y)
+Kc(I — J)?cog20). (2.6)

An example of (, 9) and (/, v) Poincaé surfaces of section drawn at enerfjy= 15 for

the complete Hamiltonia#/ in equation (2.6) is given in figure 1. Two major differences

are pointed out when comparing this figure with that obtained for the integrable case with
Kc = 0 (see for instance [17]). The most striking one is obviously the region almost
ergodically filled with points, which is associated with chaotic motion around the hyperbolic
fixed point separatix offr. In that region trajectories do not remain on a 2D torus defined

by two action integrals, but instead explore a 3D subspace of the complete 4D phase space.
Study of this region is not within the scope of the present paper (see, however, the end
of section 5). Outside from the chaotic region almost all the phase space is occupied by
regular trajectories, which are more or less distorted compared to the integrable case. As
will become clearer later, the most distorted trajectories are to be found around those values
of I which correspond to low rational values of the ratio of the classical frequencies of
the integrable Hamiltoniadfe (»*/v* equal to2, 1,1, 1 2. wherew* andv* denote

the two classical frequencies éfg, as in [17,26]). Near these periodic orbits (POs), the
trajectories brake into resonance islands. In order not to confuse these resonance islands with
resonant trajectories dfig, they will hereafter be called the ‘coupling-induced’ resonance
islands. For instance, circled in figure 1 are the coupling-induced resonance islands, which
develop around the*/v* = % PO of Hg with first action integrallpo ~ 14.27025. The
resonance islands around th&/v* = % PO of Hg with first action integrallpo ~ 15.148 27

are also clearly seen quite near to the chaotic region.

The purpose of the present paper is to study the classical dynamics of the non-
integrable HamiltonianH near these coupling-induced resonance islands. Indeed, the
classical dynamics off away from these islands is not very different from the dynamics of
the integrable Hamiltonia#r, which has already been thoroughly investigated [17, 26]. As
an example, the classical frequenciestbideduced from the plot of the power spectra are
reported in figure 2 for initial values df ranging fromly, = 12.83-13.68, that is far enough
from the% PO. The classical frequencies BE, which are calculated according to [17, 26],
are plotted on the same figure. The excellent agreement between the two plots shows

that Hc can freely be neglected away from coupling-induced resonance islands, at least

(2.5)
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Figure 1. Poincaé surfaces of section (SOS) drawn for the full, non-integrable HamiltoHian
at energyE = 15. The (/, ¢) SOS at¥ = 0 (modulo Z) contains 33 trajectories with initial
values of! ranging from/y = 11.065 tolp = 16.585 with increments of 0.24. Trajectories with
the lowest values ofp are those circling around the elliptic fixed points on the= 7 /2 and

¥ = 37 /2 axes, whereas trajectories with the highest valueg afe those circling around the
elliptic fixed points on they = 0 (or 2r) andy = = axes. The initial value of is 6p = /4

and the initial value of/ is o = 0 for non-resonant trajectories agig = k7 /2 (k =0, 1, 2, 3)

for resonant trajectories winding around an elliptic fixed point omthe kn/2 axis. The(l, 6)
SOS atyr = 0 (modulo 2r) contains 20 trajectories with values fif ranging from 12.025 to

Ip = 16.585 with increments of 0.24. The resonant trajectories with initial valudg efual to
11.065, 11.305, 11.545 and 11.785, which are drawn for fhe’ SOS, never cut th¢g = 0
surface. Initial values of andy are,fp = /4 andyo = O respectively. AtK¢c = 0, the phase
space is completely described by the valued att the elliptic fixed points Inin ~ 11.015 242

and Imax ~ 16.585125) and at the hyperbolic fixed point separatfik & 15.353599) and by
that value ofl, which separates resonant from non-resonant trajectories without being associated
with any fixed point {~ ~ 12.018399) [26]. The chaotic trajectory, which is clearly seen in
both SOS, has initial valug& = 15.385. The circles surround the coupling-induced resonance
islands, which are the traces of the trajectory with initial valye= 14.185. Other coupling-
induced resonance islands with initial vallie= 15.145 (% PO of Hg) can be seen close to the
chaotic trajectory.

up to a given accuracy. As can be seen in figure 3, this is no longer the case for values
of Iy ranging from 13.83 to 14.68, that is, those values which surround the first action
integral Ipo ~ 14.270 25 of the% PO of Hr. The large discrepancies observed in figure 3
between the calculated classical frequenciegipfand the observed classical frequencies
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Figure 2. Plot of the classical frequencies* and v* for initial values of I ranging from
Ip = 1283 to Ip = 13.68 (that is, far enough from th§ PO of Hg) for the non-integrable
HamiltonianH at energyE = 15. Other initial values ar¢o = 0 andfp = /4 (see text). The
dot-dashed line corresponds to the classical frequencidg o&lculated according to the formula
in [17,26]. The exact classical frequencies for the non-integrable Hamiltatiame deduced
from power spectra obtained from numerical integration of trajectories for asime 30 000.
The absolute precision for observed classical frequencies is abofit 10

of H clearly demonstrate that additional studies are needed in the neighbourhood of these
coupling-induced resonance islands.

3. Derivation of a local single resonance form ofif around POs of He

One method to obtain a simpler, analytically treatable fornHofiear a PO ofHr consists
of (i) Taylor expandingHr to second order as a function of its classical action integrals
I andZ;, (ii) Fourier expandingHc as a function of the two angles and 2, conjugate
respectively tol andZy, (i) retaining in the Fourier expansion @fc only the term which
is almost secular because of the neighbourhood of the PO. One is then led to a local single
resonance Hamiltonian with a constant prefactor for the cosine term.

But, first of all, let us review very briefly the classical mechanics of the Hamiltonian
Hg for them:n = 1:1, 1:2 and 1:3 resonances. Since the expressidiiafi equation (2.2)
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does not depend of, I is a consatnt of the motion for the Hamiltonidf. Hamilton’s
equations for the three other coordinates can be solved analytically and the solutions can
be put in the form

J (1) = F(o*t — Ao)
Y (1) = Yo + z0*t + G(w*t) (3.2)
0(t) = 6 + v*t + H(w*r)

where F, G and H are three periodic functions with periodr2 F is an even function,
whereasG and H are odd functions, which satisf(0) = H(0) = 0. o andfy are the
values ofyr andé at timer = 0, whereas\ is a phase shift, which depends on the valye

of J atr = 0. It is most important in equation (3.1) to use the equations in [26], which take
into account initial values, rather than those in [17], which do not take into account initial
values.w* andv* are the two fundamental frequencies of the tori supporting the trajectories.
z is a phase space structure parameter, which is equal to zero for resonant trajectffes of
and to+1/n for non-resonant trajectories @fr. The first action integral of the system is
just I. The second action integral of the system is labelledlts expression is also to be
found in [17,26]. The angles conjugate to the actidrendZ, areV = v*t and Q = w*t,
respectively. Note that at time= 0, one hasV (0) = Q2(0) = 0.

Let us now consider one trajectory of the non-separable Hamiltaddianequation (2.2)
with initial values (o, Jo, 6o, ¥o) at timet = 0. Taylor expansion of the energy in the
neighbourhood of the trajectory dfr with action integrals/y andZ,9 and energyE leads
to

E' = o(I + &pTp + x111? + xp,T5 + X1, T + - - - + KcHe

, 1, /ov* n 1/0v* , 1, /oo* , . [ OV*
X114 = =V, —= Xogp = O, X190 = @,

=29 \eE ), 2\ a1/, 27279\ 9E /), 127 0\8E )y (3.2)
wy =vg — 2xplo —x3T20 Wy = g — Xiplo — 2x55T50

’ ’y2 /72 4
E = vélo + 0)3120 — x111ly — X55150 — X12l0Z20.

In equation (3.2), derivatives with respect foare calculated at a constant value of the
energy E (and not of the second action integtgl) and derivatives with respect tB at
constant value off. The 0 subscript means that the classical frequencieHggb*, w*)

and their derivatives are taken &t and I,. The additional term¢ is then treated as a
perturbation and Fourier expanded as a function of the arglesv*t and Q2 = w*t using
equation (3.1). Calculations can be somewhat simplified by assuming that initial values are
chosen such thaty = 0 or Ag = 7, which implies thatF (2 — Ap) is an even function of

Q (and not just of2 — Ap). One obtains

+oo
Hc = Z hy coS(rn + sm)V — k2 + 8g)
k=—00
1 2
hy = o / dQ F(Q — Ag)Y?(I — F( — Ag))?? (3.3)
T Jo

x coq(rn + sm)H (L) +rnG(R2) + (rnz + k)2)
8o = (rn 4+ sm)6g + rnyy.

Around a particular PO, only the almost secular térma n’ such thatrn+sm)/n’ ~ v*/w*
is retained in equation (3.3). This leads to the expression of the local single resonance form
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Figure 3. Plot of the classical frequencies* and v* for initial values of I ranging from

Ip = 13.83 to Ip = 14.68 (that is, surrounding the valuko ~ 14.27025 of the first action
integral of the% PO of Hg) for the non-integrable Hamiltonia® at energyE = 15. Other
initial values areyy = 0 and6y = n/4 (see text). The dot-dashed line corresponds to the
classical frequencies affg calculated using the formula in [17,26] and the full curve to the
frequencies off calculated according to equations (4.5), (4.6) and (5.3). The exact classical
frequencies for the non-integrable Hamiltoni&h are deduced from power spectra obtained
from numerical integration of trajectories for a time = 30000. The absolute precision for
observed classical frequencies is about.0

of H:
'~ ]+ obTy + X 1% + x5,T5 + x,1To + K cosm'V — n'Q2 + 8o) 3.4)
K' = Kch,y m' =rn+sm. '

4. Classical dynamics of the local single resonance form dif

The classical dynamics of the local single resonance forif @f equation (3.4) is studied
along the same lines as the dynamics of the resonance Hamiltéhian equation (1.2)
[17,26]. The Hamiltonian is first rewritten according to the same canonical transformation
as in equation (2.1):

I'=n'l +m1, J' =n'l 0 =Q/m' v =V/n'—Q/m (4.1
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where6’ is conjugate td’ and’ to J’, leading to
E =o'l +6J +x) 1%+ 3, 0%+ x;,1'J + K' cosm'n'yy' + 80) (4.2)

and relations similar to equation (2.3) between the old and new parameters:

s o) o
/ / / / ’ , (43)
r_ X22 r_ i X120 X2 o K12 5X2
A= e X0= 02 " o T e X1 = m'2’

The Hamiltonian in equation (4.2) looks like that of the hindered rotor, which has been
studied by several authors (see for instance [39, 40]). There, is however, a great difference,
in the sense that the Hamiltonian in equation (4.2) is a Hamiltonian with two degrees of
freedom, whereas the hindered rotor is a system with a single degree of freedom, and one
must be careful not to loose one degree of freedom. The properties of the classical dynamics
of the Hamiltonian in equation (4.2) can be sketched as follows. Since equation (4.2) does
not depend om’, I’ is a constant of the motion. Let us define the constants, C and
R in terms of E’ and I’, according to
A= (8/ + XI/JI/)Z +4X}(E/ — oI — X;Ilz)

A+ B- (4.4)
B = |4y K'| C=—¢—yx,I R = %
Classical trajectories do not exist4f < —B. In contrast, a single librational trajectory is
observed for each value of’, I') if |[A| < B, whereas two rotational trajectories coexist
for each value of E’, I') if A > B. Librational trajectories correspond to trajectories inside
coupling-induced resonance islands (resonant trajectories), whereas rotational trajectories lie
outside the resonance islands (non-resonant trajectories). Librational/resonant trajectories
are separated from rotational/non-resonant trajectories by two hyperbolic fixed point
separatrices, which are defined By = B (that is R = 1). For librational/resonant
trajectories(|A| < B), the classical frequencies” and »*' and the action integral;
andZ; of the Hamiltonian in equation (4.2) are expressed in the form

o mn'Gn/2B
T 4K(R)

/
V=G {w/+2x;1’+ XI{C}
2x)

(4.5)
=" = 22wyt k- DER)
17 G 2= m'n’'Gm )
whereas for rotational/non-resonant trajectoli¢s> B)
, n'GnJA+B , , , X5 o
M =G 2y C
@ 2K(1L/R) v @ et F o \“F G “s)
4.6
I m’ C JA+B
T = T, = — + "E{/R)}.
1= G 2 GX}{$2+ - (/)}

In equations (4.5) and (4.6 denotes the greatest common divisomdfandr’ and arises,

as well as the factom’ in the expression of, for rotational trajectories, from the fact

that action integrals must be calculated over closed loops gone through only once. The
two rotational trajectories are characterized by opposite signs in the expressiotisanti

7;. On the other handyp*’ vanishes at the separatices between librational and rotational
trajectories, so thav*' andv*’ continuously cross these separatrices, but each one with a
vertical tangent (see figure 5 later).
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5. Results and discussion

In order to use the formalism developed in sections 3 and 4 above, there only remains to
determine how!’ in equation (4.1) must be calculated. IndeédandZ, vary in time for

the HamiltonianH, and one is able to calculate analytically for Hg but not for H. This
problem can be solved by calculatiffg using the standard formula for the Hamiltoni&k
[17,26] at a point where no energy is puthft, that is where the total phasgV —n'Q+ 3¢

in equation (3.4) is equal t?k + 1) /2. This can be done by checking for the phase while
integrating trajectories numerically and calculatibgand I’ for the value ofl which is
arrived at the first time the phase crosses an odd multiple /@& However, a much
simpler solution, which enables all the calculations to be performed analytically and avoids
numerical integration of trajectories, consists of choosing initial vallgs/d, 6o, ¥o) such

that the phase at= 0, that is§p, is precisely equal to an odd multiple af/2. Then one

just has

I' = n/lo + m/Izo. (51)

For the Hamiltonian in equation (2.6), the initial valuggs= /4 andy, = 0 satisfy both

the condition onAy mentioned in section 3 (her&y = ) and the condition 0B, (here

8o = m/2). This is the reason why all the trajectories used in figures 2-5 to verify the
analytical calculations developed in the present paper have initial vajues =/4 and

Yo = 0.

The observed and calculated action integiéland Z; against the initial valud, are
plotted in figure 4. The calculated values are obtained from equations (4.5), (4.6) and (5.1).
The ‘observed’ values for trajectories outside coupling-induced resonance islands (rotational
trajectories) are obtained by measuring area in Poinsarfaces of section (SOS), according
to

1!
= 27:-G (n'Spo+m'Syy) 1z, = %Sw (5.2)
whereS; 4 denotes the area below tlie= 7(9) curve in the first SOS (fof varying from O
to 2r) andS;, , the area below thé = J () curve in the other SOS (be careful thatonly
varies from 0 tar [9]). Equation (5.2) is true akc = 0 and remains valid as long &sdoes
not cross one of the two values associated with the separatrices between trajectories inside
and outside resonance islandg £ 14.121 460 andly ~ 14.426 635). This crossing causes
a drastic change in the topology of the tori which support the trajectories and invalidates
equation (5.2). It is seen that the agreement is excellent between observed and calculated
action integrals. It is also noticed that for rotational trajectoriEsjs very close to its
asymptotic value for vanishingc, that is+m'n'Iy/G. As for the second action integral
I, of H, 7} is discontinuous whetf, crosses a separatix. Exact numerical calculation of
action integrals inside coupling-induced resonance islands is not easily achievable, since
one no longer knows the topology of the torus, which becomes very long and thin. The
discontinuous deformation of tori at separatrices invalidates most general methods, as is
acknowledged in [41]. It was, however, observed that the computed value of the area of
the resonance island in thé, ) SOS divided by 2 is very close to the calculated value
of 7}, (see the central part of the bottom figure in figure 4), which suggestgihedn be
calculated exactly using/(6) Poincaé SOS. This point, which is not clearly understood,
merits further investigation.

The observed and calculated frequenci¢s and »*' against the initial valudy are
plotted in figure 5. The calculated values are obtained from equations (4.5) and (4.6).
The ‘observed’ values, for trajectories both inside and outside coupling-induced resonance

I/
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Figure 4. Plot of the action integralg’ andZ for initial values of ranging fromlo = 13.83

to Ip = 14.68 (that is, surrounding the valugo ~ 14.270 25 of the first action integral of the

% PO of Hg) for the non-integrable HamiltoniaH at energyE = 15. Other initial values are

Yo = 0 andfy = /4 (see text). In both plots, the full curves represent the action integrals
calculated according to the formulae in equations (4.5), (4.6) and (5.1). The dot-dashed line
in the bottom plot corresponds to the limiting valueZf for vanishing values oKc, that is

+6/o. The exact values of the action integrals) (are deduced from Poin@SOS obtained by
numerical integration of trajectories (see section 5).

islands, are deduced from the power spectra of the coordihatetained from numerical
integration of Hamilton’s equations: one actually just needs to follow the evolution (as a
function of Iy) of the peaks, which far from tha’'/n" PO of Hg appear very close to the
frequenciesw* and m'v* — n'w*. Indeed, according to section 4} and »*' behave
continuously when crossing separatrices and, in addition, for rotational trajectories the
asymptotic values (both far from the PO or for vanishing valuexgf of v*' and »*’
are
*/ G * */ 7% !k

v %%w 1) %ﬁ|mv —n'w*|. (5.3)
The peak at* is the strongest one in the power spectrum, whereas the pedk’at n'w*
is very weak and grows nearly linearly wittic. It is observed that the agreement is again
excellent between observed and calculated frequencies. It is also noticed that, because of
the vertical tangents at the separatices, the classical frequencies for non-resonant trajectories
do not remain as close to their asymptotic values for vanishing valu&s @fs the second
action integralZ;, does. The perturbation on frequencies extends over a ranfgewlich is
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Figure 5. Plot of the classical frequencies*’ and v*’ for initial values of I ranging from

Ip = 13.83 to Ip = 14.68 (that is, surrounding the valugo =~ 14.27025 of the first action
integral of the% PO Hg) for the non-integrable HamiltoniaH at energyE = 15. Other initial
values areyo = 0 anddp = /4 (see text). The dot-dashed line corresponds to combinations
of the classical frequencies dfg calculated using the formula in [17,26] and equation (5.3)
and the full curve to the frequencies &f calculated according to equations (4.5) and (4.6).
The exact classical frequencies for the non-integrable HamiltoHizare deduced from power
spectra obtained from numerical integration of trajectories for a time- 30 000. The absolute
precision for observed classical frequencies is aboat' 10

roughly twice the range ofy for resonant trajectories. The most striking feature in figure 5
(as well as in figure 3) is the fact that one frequency remains mostly constant throughout
the coupling-induced resonance island: simple Taylor expansions in equation (4.5) actually
show thatall the trajectories inside coupling-induced resonance islands share an almost
degenerate frequency*’ ~ Gwpo/m’, Wherew}, denotes the second classical frequency
of Hg at the PO. This property does not depend on the smallneg& (it was verified
that it is still observed for values ok larger than the anharmonicity parameters) and
seems to be a quite general phenomenon, since it is also noticeable in the study of Laskar
dealing with the standard map [42]. On the other hand, reverting equation (5.3) enables the
calculation of the frequencies* and w* in figure 3. The discontinuity ob* at Ipo is just
due to the sign change &to of the term inside the absolute value in equation (5.3).

Another point, which is worth noting, deals with the width of the coupling-induced
resonance islands. Indeed, Taylor expansions in equation (4.4) show that separatrices
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Figure 6. Plot of the maximal Lyapunov exponesi for trajectories ofH with energyE = 15

and initial valuesty = /4, ¥o = 0 andIp ranging from 14.9 to 15.8. The positions of the
separatrix/ ™ of Hg, as well as the separatrices for the coupling-induced resonance islands, are
indicated on the plot.

(A = B, that is,R = 1) are approximately located at

2K’ 1/2
) o
wpo(d(V*/w*)/31)po

where the classical frequencies and their derivatives are calculatieg ahd for Kc = 0.

The expression in equation (5.4) leads to valuedqoét the separatrices equal fg ~
14.1178 andly ~ 14.4228, close to the exact values gt~ 14.1215 andlp ~ 14.4266.
Equation (5.4) shows that the width of the coupling-induced resonance island grows as the
square root of the perturbation parameter but is inversely proportional to the square
root of the frequency* of the periodic orbit and to the square root of the derivative with
respect to/ of the winding numbep*/w*.

It can also be mentioned that this study provides a nice illustration of the criterion of
overlapping resonances introduced by Chririkov in the 1950's [43] and further discussed by
Walker and Ford [27] and Atkin and Logan [28, 29] (an actually much clearer illustration
than a previous paper of mine on this subject, see [44]). This criterion states that widespread
chaos occurs where coupling-induced resonance islands overlap. For the Hamiltonian in
equations (2.5) and (2.6), it is seen using equation (4.4), that:

e below the separatrix ofir at I ~ 15353599 [17, 26], all the 21’ POs overlap for
values ofn’ equal to or larger than fivel{ > 15.286 77), whereas thé (15.08897< Ip <
15212 25) and% (14.121 46< Ip < 14.426 63) POs remain well separated.

e above ™, all the 2/n’ POs overlap for values of’ equal to or larger than four
(Io < 15.42068), whereas th§ (15.50349< Ip < 15.62107) and% (16.37824< Ip <
16.507 21) POs remain well separated.

(Due to the expression ofic in equation (2.6), the procedure for the derivation of
the local single resonance form &f in section 3 shows that only/2’ resonance islands
are expected to develop substantially.) Maximal Lyapunov exponents obtained using the

Iy~ IPO:F<
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rescaling procedure described in [45] are drawn in figure 6 for valudg cdnging from

14.9 to 15.8. It is clearly seen in this figure that, in agreement with the criterion of Walker
and Ford, the region of overlapping resonances is completely chaotic. However, the chaotic
region extends somewhat further, and is actually stopped by the first well separated coupling-
induced resonance islands which are encounte%eidlands below* and\?3 islands above

7).

6. Conclusion

In this paper, a study of the classical dynamics of a non-integrable Hamiltonian in the
neighbourhood of coupling-induced resonance islands is performed. This study is both
statistical and iterative. It is statistical in the sense that it neglects higher-order small
details. Indeed, the global features of the SOS in figure 1 can again be observed at a
smaller scale around each set of coupling-induced resonance islands: in figure 6, thin
regions of chaos are clearly seen around the separatrices of first-order, coupling-induced
resonance islands. Similarly, the plot of SOS with a smaller incremedy téveals very

small, second-order, coupling-induced resonance islands around POs of the local single
resonance form of the Hamiltoniaii in equation (3.4) that is for low-order rational values

of w*'/v*', and so on for increasing detail orders. None of these details is reproduced by
the perturbation method used in the discussion above. However, the procedure described
in this article is alsdterative, in the sense that second-order thin features can be taken into
account along the same lines as first-order coupling induced resonance islands. That is, by
(i) expanding the Hamiltonia# in equation (3.4) in terms of th¥ andZ action integrals

and (i) Fourier expandindic in terms of the angles*'t andw*'t conjugate tol’ andZ;

and retaining only the almost secular term. The intricate route towards chaos of the ‘double
resonance’ Hamiltonian in equation (2.2) can therefore, at least in part, be modelled.
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